Evolutionary approach for detection of buried remains using hyperspectral images

Programming technique called Brain Programming (BP) for automating the design of Hyperspectral Visual Attention Models (H-VAM.), which is proposed as a new method for the detection of buried remains. Four graves were simulated and monitored during six months by taking in situ spectral measurements of the ground. Two experiments were implemented using Kappa and weighted Kappa coefficients as classification accuracy measures for guiding the BP search of the best H-VAM. Experimental results demonstrate that the proposed BPmethod improves classification accuracy compared to a previous approach. A better detection performance was observed for the image acquired after three months from burial. Moreover, results suggest that the use of spectral bands that respond to vegetation and water content of the plants and provide evidence that the number of buried bodies plays a crucial role on a successful detection.

Descarga el archivo aquí